Author Affiliations
Abstract
1 State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
2 e-mail: yuxuegong@zju.edu.cn
3 e-mail: mseyang@zju.edu.cn
Developing a low-cost, room-temperature operated and complementary metal-oxide-semiconductor (CMOS) compatible visible-blind short-wavelength infrared (SWIR) silicon photodetector is of interest for security, telecommunications, and environmental sensing. Here, we present a silver-supersaturated silicon (Si:Ag)-based photodetector that exhibits a visible-blind and highly enhanced sub-bandgap photoresponse. The visible-blind response is caused by the strong surface-recombination-induced quenching of charge collection for short-wavelength excitation, and the enhanced sub-bandgap response is attributed to the deep-level electron-traps-induced band-bending and two-stage carrier excitation. The responsivity of the Si:Ag photodetector reaches 504 mA· W 1 at 1310 nm and 65 mA ·W 1 at 1550 nm under 3 V bias, which stands on the stage as the highest level in the hyperdoped silicon devices previously reported. The high performance and mechanism understanding clearly demonstrate that the hyperdoped silicon shows great potential for use in optical interconnect and power-monitoring applications.
Photonics Research
2019, 7(3): 03000351

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!